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Abstract

The thicknesses of C10-C18 alkylsiloxane monolayers on

silicon-silicon dioxide substrates have been measured using

ellipsometry and low angle X-ray reflection. Although, for

any given sample, thicknesses measured by the two methods

agree tc within experimental error, ellipsometric

measurements are systematically larger by approximately 2 A.

This difference may result from variations in the sensitivity

of the two techniques to the structure of the interface

between silicon dioxide and the alkylsiloxane monolayer. The

X-ray reflectivity measurements provide evidence that these

-1-
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organic monolayers do not build up as island structures and

demonstrate that the approximate area projected by each alkyl

group in the plane of the monolayer is - 21 ± 3 A2 .

Preliminary studies indicate that this technique can be used

to follow the changes in the structure of a monolayer which

result from chemical transformations. The influence of

damage that is induced by X-ray radiation on these

measurements is discussed.
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Introduction

This paper describes the use of ellipsometry and

low-angle X-ray reflectivity to characterize monolayers

prepared by reaction of alkyltrichlorosilanes with the

surface silanol groups of silicon bearing a hydrated native

oxide. Our primary objective was to compare estimates of the

thicknesses of these films obtained using these two

techniques. Ellipsometry has been employed extensively for

the measurement of the thicknesses of thin organic films. 1- 5

X-ray reflectivity is just beginning to be used for this

purpose. 6-1 1 Agreement between ellipsometry and X-ray

reflectivity would help to validate both techniques. A

secondary objective was to examine the structural order of

these self-assembled alkylsiloxane monolayers. As part of

this work we have attempted to generate monolayers that have

a variation in electron density along the normal to the

substrate surface. The intensity of the X-rays reflected

from such samples is sensitive to this type of change in

electron density. 6' 12 The determination of the electron

distribution in films ostensibly having variations in

electron density along the z-axis would provide one direct

measure of order in these systems.

Previous studies have attempted to verify the accuracy

of ellipsometry in determining the thicknesses of organic

monolayers. For Langmuir-Blodgett monolayers estimates of

thickness by ellipsometry, isotopic labelling, 13 ,14 and

surface pressures 1 5 are in agreement. These experiments
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depended, however, on comparisons of complete and partial

monolayers and demonstrated only that the thickness of a

monolayer as measured by ellipsometry correlates with the

number of molecules per unit area in that monolayer and their

length. We have reached a similar conclusion when

correlating the ellipsometric thicknesses of monolayers

prepared from a homologous series of alkyltrichlorosilanes

with the relative intensities of carbon and silicon observed

in X-ray photoelectron spectroscopy (XPS).16 This conclusion

has also been reached in related experiments that utilized

monolayers of alkyl thiols adsorbed on gold films. 17

Against the background of these earlier studies, we had

two reasons to conduct a comparison of results from

ellipsometry and X-ray reflection. First, these previous

studies did not directly measure the thickness of the

monolayers. Second, they examined Langmuir-Blodgett, rather

than self-assembled, monolayers.

The self-assembled monolayers used in this work were

prepared by placing a silicon-silicon dioxide (Si/Si02)

substrate in a solution containing an alkyltrichlorosilane

(RSiCl3) .18 The Si-Cl bonds react with silanol groups 1 9 and

adsorbed water2 0 present on the surface of the silicon

dioxide, and form a network of Si-O-Si bonds of undefined

structure. 2 1 The resulting monolayers are bound covalently

to the substrate and are stable. X-ray photoelectron

spectroscopy (XPS) reveals that no chlorine remains in

them.1 6 The density of surface silanol groups on the native
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oxide is only - 1 per 20 A2 .2 2 ,2 3 This density is

approximately equal to the surface density of R groups within

the monolayer (see below). The remaining Si-Cl bonds of the

RSiCI3 groups apparently react with water2 4 and form -Si-O-

Si- and/or -Si-OH moieties.

Ellipsometry and low-angle X-ray reflection are both

optical techniques based on the reflection of light from

interfaces. Although these two techniques are described

using the same theoretical treatment -- Fresnel's equations

for the reflection of light2 5 -- they measure different

properties of the light reflected from an interface. In

addition, the wavelengths of the light used here in

ellipsometry (l = 6328 A) and X-ray reflection (X = 1.5 - 1.7
A) differed by more than a factor of 103 The two techniques

are also sensitive to different facets of interfacial

structure.

Results

Preparation of Monolayers. We prepared

alkylsiloxane monolayers on silicon-silicon dioxide (Si/SiO2 )

substrates by reaction with alkyltrichlorosilanes using

techniques similar to those described previously.1 6 ,1 8 ,2 6

Because the measurement of X-ray reflection requires large,

flat samples, the silicon substrates for these studies were

significantly larger (2.5 x 7.5 cm) and, in general, thicker

(0.125 in.) than those used previously. 2 7 Some samples were,

however, prepared on thin (0.015 in.) substrates. 2 8 We
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examined monolayers prepared from saturated alkyltrichloro-

silanes (Cl3Si(CH2)nCH3, n = 9,11,14,15,17), from 16-hepta-

decenyltrichlorosilane (HTS, C13Si(CH2)15CH=CH2), and from a

fluorinated silane (Cl3Si(CH2)2(CF2)7CF3 ).

Ellipsometry. The theory of ellipsometry has been

discussed in detail by others.1 2 9 Here we summarize certain

important details and assumptions of the method.

Ellipsometry analyzes the reflection of elliptically

polarized light from an interface separating two media with

different indices of refraction. This elliptically polarized

light can be represented as the sum of two components, one in

the plane of incidence of the light (p polarization), the

other perpendicular to this plane (s polarization). Upon

reflection the amplitude and phase of each of these

components is altered, resulting in a change in the overall

polarization and amplitude of the light wave. These changes

in amplitude and phase are represented by the Fresnel

reflection coefficients for the p and s polarizations, rp and

rs . Ellipsometry measures the ratio of these coefficients,

p. The standard relationships between p and the measured

analyzer (A) and polarizer (P) angles are summarized in

equations 1-3.1,29

p - o - tan 41 exp (iA) (1)rs

y=A (2)

A = 2P + n/2 (3)
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The angle 4 represents the ratio of the changes in amplitude

for the s and p polarizations of light upon reflection from

an interface. The angle A is the difference in the phase

shifts that are experienced by each polarization upon

reflection.

In order to use ellipsometry to determine the thickness

of a monolayer supported on a substrate, one must compare

data obtained from the monolayer-substrate system with those

from the uncoated substrate. 3 0 This comparison is

straightforward, but differences between the substrate in

coated and uncoated form may skew the ellipsometric results.

Clean silicon-silicon dioxide has a high surface free energy

and, therefore, a high affinity for both water and organic

contaminants. Organic monolayers terminating in methyl and

vinyl groups have low interfacial free energies and resist

contamination.31  If contamination of the bare Si/SiO2

substrate were significant, we would expect that the

thicknesses of the monolayer, as measured by ellipsometry

would be too small. We have found that the thicknesses of

these a-alkylsiloxane monolayers correspond very closely to

those which we expect for a trans-extended chain oriented

perpendicular to the surface: 1 6 that is, to the largest

plausible thickness. A trans-extended chain is in agreement

with infrared measurements of chain geometry. 32 We conclude,

based on these two lines of evidence, that contamination does

not appear to affect the ellipsometric results in these

systems. 3 3
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The conventional intezpretation of the ellipsometric

data is based on a model consisting of parallel interfaces

separating air, the alkylsiloxane monolayer, and the

substrate (Figure 1). The effectively infinitely thick

substrate has a refractive index n2, the monolayer has a

uniform refractive index nl, and the ambient atmosphere has

refractive index no (which is assumed to be 1). Since the

silicon substrates have a native surface oxide layer. 3 4 ,3 5 a

three-layer model might, in principle, provide a more

accurate representation of the structure of the monolayer.

In practice we have used a two-layer model and have measured

a single effective refractive index for the substrate that

combines contributions from the bulk silicon and the surface

oxide.3 6 Although we assume that the two interfaces,

monolayer-substrate and air-monolayer, are perfectly smoo.h,

theoretical and experimental studies suggest that, for

ellipsometry, roughness has little effect on the measured

thickness of the monolayer.3 7 - 3 9

Ellipsometry can, in principle, determine both the

thickness and the refractive index cf a monolayer. For the

very thin (< 50 A) films examined here, it is not, however,

possible to determine both of these quantities

simu'taneously. 4 0 We must, therefore, assume a value tor one

of them before calculating the other. We have chosen to

model the monolayer as a transparent medium with a refractive

index of 1.45;41 other investigators have used a refractive

index of 1.50 for organic monolayers. 5 Our value is
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Figure 1. Two-layer model used for ellipsometry. The

silicon substrate has refractive index n2, the

monolayer has refractive index ni, and the ambient

air has refractive index no. The interfaces

between each layer are assumed to be perfectly

sharp. For the alkylsiloxane monolayers on

silicon n2 is - 3.8, ni is - 1.45, and no is

assumed to be 1. The incident angle of the laser

light, 00, is 70°. The angles of refraction,

01 = 40° and 02 = 150, are given by Sneli's law

(nlsinol = n2sinO2).
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approximately that of pure liquid and crystalline paraffins

(1.42-1.44)42 but is lower than that of high density

polyethylenes (1.49-1.55).4 3 While our choice of refractive

index is somewhat arbitrary, the X-ray reflectivity

measurements (see below) suggest that the electron density in

these monolayers is similar to that of bulk paraffins. 4 4 - 4 7

For the monolayers examined here, an increase of 0.05 in the

assumed value of the index of refraction of the monolayer

would decrease its calculated thickness by - 0.8 - 1.3 A. 4 8

For ellipsometry we used a helium-neon laser (X = 6328

A) as the light source. Other wavelengths within the visible

region would provide similar results. 5 The method has an

accuracy on the order of ± 2 A.

Low-Angle X-Ray Reflectivity. The reflection of

X-rays from surfaces 6 has been used to characterize the

structural properties of several systems, including

liquids4 9- 5 1 and liquid crystals.5 2 - 5 4 We and others have

already described the theory of this technique 5 5 and its use

for the characterization of the structure of monolayers

prepared from alkyltrichlorosilanes. 8 , 2 7 We will only

summarize certain features of the method.

Low-angle X-ray reflectivity measures the intensity, R,

of X-rays that are reflected from a surface as a function of

the angle, e, between the incoming X-ray beam and the sample.

In general the variation of this intensity with 0 is given by

Fresnel's laws. The intensity also varies as a result of the

change in the difference in phase between X-rays reflected
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from the air-monolayer and monolayer-substrate interfaces. R

is related to <dPel/dz>,5 6 the average derivative of the

electron density along the normal (z) axis of the substrate,

by equation 4. Here hqz (eq 5) is the change in momentum

CO

R RF I p J <dpel/dz> exp(iqzz) dz 1 2 (4)
-00

qz = 4- 1sinO (5)

experienced by the X-ray photons during the reflection

process, 5 7 while p,, is the electron density of the bulk

substrate. RF is the Fresnel reflectivity, the intensity of

X-rays reflected from a bare substrate whose boundary with a

vacuum is sharp and perfectly smooth. If the refractive

index of the substrate is known, the form of RF is determined

solely by the Fresnel reflection coefficients. This index of

refraction is calculated from the critical angle, Oc, for

total reflection of the X-rays. 5 5 The refractive index in

the X-ray region is a linear function of the electron

density, Pel. 5 8 The change in electron density dPel/dz is

therefore a direct measure of dn/dz.

Equation 4 describes the pattern of interference that

results from the reflection of X-rays from an arbitrary

electron distribution, Pel(Z). In the case of two sharp

interfaces separated by some distance, eq 4 reduces to the

familiar interference condition for reflection from parallel
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surfaces. 5 9 ,60 Since the measured interference pattern

depends on the actual distance separating the two interfaces

in our monolayer system, this method, unlike ellipsometry,

directly measures the thickness of the monolayer.

Our experiments utilized two monochromatized sources of

X-rays: a rotating anode (X 1.54 A) and the National

Synchrotron Light Source (NSLS, X = 1.71 A). We present the

data obtained from these two sources as a function of qz

because the interference pattern is invariant in qz,

regardless of the wavelength of radiation used. We will also

usually present our data in the form R/RF. Since for a

single sharp interface R = RF, 5 9 R/RF = 1 for all qz. Any

divergence of Pel from that characterizing a single ideal

interface is, therefore, readily apparent as deviations in

R/RF from a horizontal line.

The interpretation of the observed interference pattern

(Figure 2 shows typical data) requires fitting it to a

structural model of the monolayer that incorporates changes

in the electron density along the surface normal (dPel/dz).

We have analyzed our data using a treatment described in

detail elsewhere 61 and summarized graphically in Figure 3.

This two-layer model is the simplest plausible model for the

description of the alkylsiloxane monolayers, but it is not an

exact representation of the monolayer-substrate system. The

presence of the surface oxide on the silicon substrate might

suggest the use of a three-layer model. The electron

densities of amorphous silicas and bulk silicon are, however,
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Figure 2. Intensity, R, of X-rays reflected from

alkylsiloxane monolayers on silicon-silicon

dioxide substrates as a function of qz, the

momentum change of the photon upon reflection.

The monolayers were prepared from

alkyltrichlorosilanes, Cl3Si(CH2)nCH3. The top

spectrum is for bare Si/SiO2. Each spectrum is

offset by 103 from the one above it. The solid

line is the calculated Fresnel reflectivity, RF,

for a perfectly smooth silicon substrate.
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Figure 3. Models for Pel, the electron density, and dPel/dz,

the change in electron density along the normal

perpendicular to the plane of the monolayer, used

to analyze the measured X-ray reflectivity of

alkylsiloxane monolayers on Si/Si02 substrates.

The air-monolayer and monolayer-substrate

interfaces are represented in dPel/dz by Gaussian

functions, Alexp(z2/201 2) and A2exp( (z-d)2/2a2 2 )

The pa-ameter d, the separation between the

centers of these functions, represents the

distance between the air-monolayer and monolayer-

substrate interfaces. This distance is the

thickness of the monolayer. Al, A2, al, and 02

are the heights and widths of the Gaussian

functions. The parameters 8pl and SP2 are the

changes in electron density across each interface

and are proportional to Alal and A2a2. The

electron density decreases from substrate to

monolayer to air. The index of refraction for

X-rays is a linear function of the electron

density.
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very similar. 62 To the X-rays the silicon and silicon

dioxide therefore appear, to a first approximation, as a

single material with no separating interface. 63 In this

paper we will use the two-layer model to determine the

thicknesses of the alkylsiloxane monolayers. In a separate

paper 27 we discuss the uncertainties associated with this

model and demonstrate how the thickness of the monolayer

depends slightly on the model used.

Our model describes dPel/dz for each interface as a

Gaussian function, Aexp(z 2 /202 ). The model contains five

parameters: the thickness of the monolayer, d (actually the

distance between the centers of the substrate-monolayer and

monolayer-air interfaces), the height of each Gaussian, Al

and A2, and their widths, a1 and 02.64 The a parameters

represent the roughnesses and intrinsic widths of both

interfaces. The changes in electron density across each

interface, 5Pl and 5P2, are proportional to Alal and A202

respectively. The positions of the minima in the X-ray

profile are determined almost entirely by d. The thickness

of the monolayer can therefore be determined to an accuracy

of - 1 A. The amplitudes of the minima, as well as the

general shape of the profile of the scattered X-rays, reflect

the combined effects of Al, A2, (1, and 02. Because these

parameters are coupled, obtaining reliable values for them is

technically complex.2 7

X-ray reflectivity does not utilize comparisons between

the bare substrate and the coated sample to measure the
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thickness of the monolayer. Differences in susceptibility to

contamination between the substrate and the monolayer would

therefore have no effect on the measured length of the

monolayer. Adsorption of impurities on the monolayer would,

however, cause an increase in its apparent thickness. During

the several hours required for the accumulation of the X-ray

data, we have observed the buildup of a contaminant layer on

the higher-energy Si/SiO2 surface. 3 3 We have not detected

such contamination when a monolayer is present.

X-ray Damage. While ellipsometry is a non-destructive

technique, exposure of an organic monolayer to synchrotron

radiation results in some degradation of the sample. The

experiments reported here were conducted under air rather

than in vacuum or under an inert gas. We found that, upon

removal from the X-ray beam, the contact angle of water on a

methyl-terminated monolayer had decreased by 25 - 400 from

eH20  1120 to 2 = 72 - 880.65 This lowered contact angle

appeared only on the central portion of the sample: that is,

the area that had been exposed to the greatest flux of

X-ravs. The edge of this sample, which had had little or no

exposure to X-rays, exnibited unchanged wettability

(ea2 0 = 1120). Ellipsometry failed to discern any

significant difference between the damaged and pristine

regions.

Figure 4 presents XPS spectra of the C Is peaks from the

center and edge regions of a monolayer prepared from

dodecyltrichlorosilane (Cl3Si(CH2)1CH3) . The damaged area,
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Figure 4. XPS spectra of a monolayer prepared from

Cl3Si(CH2)11CH3 showing radiation damage caused by

exposure to X-rays from a synchrotron source:

survey spectra (left) and high resolution spectra

of the C ls region (right). A) Edge of sample

unexposed to X-rays. The contact angle in this

region was Oa2 0 = 1120. The contact angle and XPS

spectra of this area were indistinguishable from

those of monolayers that had not been exposed to

any X-ray radiation. No carbon atoms in oxidized

environments are observed. B) Central area of

sample exposed to the greatest flux of X-rays.

The contact angle ih this region was a = 820.

The high-resolution C is spectrum exhibits a tail

to higher binding energy, indicating the presence

of oxidized carbon species.
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H20

which had 0  = 820, shows a tailing to higher binding

energy that is not present in th3 areas unexposed to the

H20radiation. We suspect that these changes in Oa ard the XPS

spectra reflect oxidation of the monolayer to polar, oxygen-

containing functionalities (alcohols, ketonas, carboxylic

acids, hydroperoxides, and/or others).66 We could not detect

these new oxygen signals directly by XPS against the large

background signal from tne oxygen atoms in the surface

silicon oxide. This type of damage apparently requires

exposure to intense X-rays. Samples that had only been

exposed to radiation from a rotating anode source, whose flux

was approximately 0.1% of that of the synchrotron, exhibited

no change in 82 0 or in XPS spectra.6 7

Although the damage to the monolayer was clearly

measurable, we do not, for two reasons, believe that it had a

significant effect on the value of the thickness measured for

the monolayer. First, samples examined on both the rotating

anode and the synchrotron exhibited similar reflectivities.

Second, the information of primary importance in determining

the thickness of the monolayer using the twc-layer model --

the positicn of the first intensity minimum in the reflected

X-rays -- was derived after r latively brief exposure to the

X-rays.68

Thickness of Alkylsiloxane Monolayers on Silicon.

We applied both X-ray reflectivity and ellipsometry to a set

of alkylsiloxane monolayers (Figure 5). For fifteen samples

and six chain lengths, the agreement between the two
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Figure 5. Comparison of the thicknesses of alkylsiloxane

monolayers as measured by ellipsometry and X-ray

reflectivity. The solid circles (0) are the

thicknesses of complete monolayers; the open

circles (0) are the thicknesses of partial

monolayers. The solid line is that expected if

the two techniques yield the same thickness. The

dotted line is offset by 1.4 A and is that

expected if only ellipsometry includes the silicon

atom of the alkylsilane in the measured thickness

(see text).
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techniques is good. The maximum deviation between the

thicknesses estimated using the two methods is 4.2 A; the

average difference is 2.2 A (rms) . This accuracy is

equivalent to an error of - 10% in the measurement of the

thickness of a C18 monolayer.

Ellipsometry systematically gives larger values of

thickness. This difference could result from the use of too

low a value for the refractive index of the monolayer. We

would, however, require n = 1.55 in order to obtain values

for the width of the monolayers from ellipsometry

commensurate with those from the X-ray measurements. While

such a high refractive index is found for crystalline

polyethylene,4 3 it seems unreasonable for a hydrocarbon

monolayer that contains methyl groups.

We believe that the discrepancy between the thicknesses

inferred from ellipsometric and X-ray measurements is, at

least in part, the result of a subtle difference in the two

methods. The ellipsometric thicknesses are based on

differences in measurements of the bare substrate and the

substrate with an attached alkylsiloxane monolayer. The

refractive index of Si02 is 1.4669 and the contribution of an

-O3SiCH2- moiety to the index of refraction of the monolayer

is probably very close to that of the alkyl chain, R. Thus,

the thickness measured by ellipsometry Includes the silicon

atom of the alkylsiloxane group. Tr the X-ray experiment the

measured thickness corresponds to the distance separating

interfaces between media of different electron densities.
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Since the electron density of the silicon atom in the RSiO3-

group that attaches the monolayer to the substrate is

effectively indistinguishable from that of the oxide layer on

the substrate, the silicon atom of the alkylsilane group

appears to the X-rays to be part of the substrate, not of the

hydrocarbon monolayer. In short, ellipsometry measures the

thickness of a -Si(CH2)nCH3 monolayer; X-rays, of a

-(CH2)nCH3 monolayer. This explanation suggests that

thicknesses estimated by ellipsometry should be - 1.4 A

longer than those estimated by X-ray reflectivity. 7 0 These

considerations cannot account for all the observed difference

between the two sets of measurements. The remaining

difference (- 0.7 A) probably reflects minor deficiencies in

the models used in analyzing the ellipsometric and X-ray

data.

Projected Area of Alkylsiloxane Groups in the

Plane of the Monolayer. The data from low-angle X-ray

scattering provides a semi-quantitative estimate of the in-

plane area of each alkylsiloxane group in these monolayers.

The critical angle for total reflection from the substrate,

Oc, is related to the electron density of the silicon

substrate Pelsi (ea 6) .55 The observed critical angle,

e2 %2Peiro
c - r o = 2.818 x 10 - 5 A (6)

c= 0.225 t 0.0070 for X-rays having wavelength

= 1.54 A, 7 1 corresponds to an electron density of 0.72
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0.05 A-3 . The expected value for silicon, 0.70 A-3 , is in

good agreement with this number. The fitting of the profile

of scattered X-rays to the model of <dPel/dz> for the covered

substrate gives an estimate of the electron density of the

monolayer, Pelmono, relative to that of the substrate. For

the n-alkane monolayers studied here, we estimate, using a

three-layer model, that Pelmcno'elgi = 0.43 ± 0

The area per alkylsi~oxdne group, A, can then be calculated

from this estimate of the electron density of the monolayer,

the thickness of the monolayer, d, and the number of

electrons, Ne, in the alkyl group of each alkylsiloxane

moiety (eq 7).73 Our calculated value for A is 21 ±

Ne
A -- (7)

dPel

3 A2 per RSi- group.7 4 An alternative analysis, based on

monolayers that had been prepared from dodecyl- and

octadecyltrichlorosilane, yields an area of 22.5 ± 2.5 A.2 7

These areas are similar to that found for close-packed

Langmuir-Blodgett mornolayers of long-chain alcohols (20.5-22

A2)75 and to the cross-sectional area per molecule within

crystals of long chain paraffins (20.5 A2 ).4 4 ,45 Other

studies have concluded that these self-assembled structures

are themselves at or near a close-packed arrangement. 1 8 Our

results are consistent with this conclusion.

Structure of Incompletely Formed Monolayers. We

would like to be able to assess the process by which
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alkyltrichlorosilanes adsorb and bind to a silicon substrate.

While we cannot, with our current level of technical

sophistication, directly analyze this process, we can

determine certain features of the structure of incompletely

formed (partial) monolayers. The analysis of these

structures may, in turn, shed light on how complete

monolayers are formed.

We generated partial monolayers by removing the

substrates from the solutions containing the

alkyltrichlorosilanes before the monolayers had formed

completely. We hypothesized two extreme possibilities for

the structure of such monolayers (Figure 6). A complete

monolayer is characterized by a length, d, and a refractive

index, nI. In one possible structure for an incomplete

monolayer, the alkyl chains would be uniformly distributed

over the substrate, but would be disordered and have a

liquid-like structure. In this "uniform" case the monolayer

would have a refractive index similar to that of the complete

monolayer, but its thickness would be less. In the second

structure, the monolayer would consist of islands of

alkylsiloxane groups having local structure similar to that

of the complete monolayer. In this "island" model, the

thickness would be the same as that of the complete

monolayer, but the average refractive index of the monolayer

would be lower. We cannot, using ellipsometry, distinguish
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Figure 6. Models for the structure of incomplete monolayers.

A complete monolayer has a thickness, d, and an

index of refraction, nl. In the uniform model the

partial monolayer has a length less than d and an

index of refraction approximately equal to nl. In

the island model the incomplete monolayer has a

thickness, d, but the index of refraction is less

than nl.
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between these possibilities, since we must assume the

refractive index of the monolayer in order to determine its

thickness. X-ray reflection can, however, differentiate

between these two models. For a structure containing

islands, the positions of the minima in the X-ray profile

would be the same as those of the complete monolayer since

the distances between the air-monolayer and monolayer-

substrate interfaces would be the same. The intensities of

these minima would change because the average electron

density within the island-containing structure would be lower

than that within the complete monolayer. For the "uniform"

structure the distance separating the interfaces would be

less than that of the complete monolayer. Therefore the

locations of the minima would differ from those of the

complete monolayer.

Figure 7 shows the intensity of X-rays reflected from

two monolayers prepared from octadecyltrichlorosilane

(Cl3Si(CH2)l7CH3, OTS) . The complete monolayer was prepared

by immersing the silicon substrate in a solution containing

OTS for 1 h. It had a thickness, by ellipsometry, of 26 A.

The second sample was placed in the same solution for 40 sec.

By ellipsometry its thickness was 14 A, approximately 60% of

that of the complete structure. There is an obvious shift in

the position of the primary minimum for the complete and

partial monolayers. This shift corresponds to a difference

of 7 A in thickness, which is well beyond the experimental

error of the experiment.
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Figure 7. Comparison of the X-ray reflectivity, R/RF, of

partial and complete monolayers prepared from

Cl3Si(CH2)nCH3. A) n 17. B) n = 11. The

reflectivities of the complete monolayers are

offset by a factor of 100.
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Figure 7 also presents similar data for two monolayers

formed from dodecyltrichlorosilane (Cl3Si(CH2)lICH3). While

this set of data is not as complete as that for the

monolayers prepared from OTS, the shift in the location of

the minimum for the partial monolayer is also readily

apparent. While in this latter system the incompleteness of

the data set prevented us from obtaining reliable values for

the electron density of the monolayer, the similarity in the

amplitudes of the minima suggests that the electron density

of the incomplete monolayer was similar to that of the

complete structure.

We conclude that the structure of these partial

monolayers is best described by the "uniform" model

(Figure 6).76 This conclusion differs from that of Sagiv,
7 7

which is based on an infrared study of partial (- 60%) and

complete monolayers prepared from OTS on aluminum by

procedures similar to those used here.

Variation of the Electron Density of the

Monolayer. The intensity of reflected X-rays at the

interference minima in the X-ray profile is smallest when the

intensities of light reflected from the substrate-monolayer

and monolayer-air interfaces are equal. This condition is

met when the electron density of the monolayer is

approximately halfway between that of the silicon substrate

and air. Tf the electron density of the organic layer is too

close to that of the substrate or of air, the incoming X-rays
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see only one interface: that having a significant change in

electron density.

We have demonstrated this effect by comparing the X-ray

profiles for two monolayers formed from alkyltrichlorosilanes

containing ten carbon atoms: Cl3Si(CH2)9CH3 and

Cl3Si(CH2)2(CF2)7CF3 (Figure 8). The fluorinated silane

should generate a monolayer whose electron density is close

to that of the silicon substrate. The amplitude of the

minimum is much lower for the fluorinated alkylsiloxane than

for the hydrocarbon. (The positions of the minima are

different since the fluorinated silane has two electron

density regimes along the normal axis, one for the layer

containing the two -CH2- groups and one for the layer

containing the eight-carbon perfluorinated chain. The

alkylsiloxane monolayer containing the -(CH2)9CH3 group has a

uniform electron density throughout the monolayer).

Monolayers composed of hydrocarbon have electron

densities midway between that of silicon and air and are very

amenable to investigation by X-ray reflection. For other

systems, such as the fluorinated monolayer on silicon shown

in Figure 8 or hydrocarbon monolayers on transition metal

substrates or on water, the acquisition of useful results

from X-ray reflectivity will generally require detailed

analysis.

Characterization of Chemical Reactions Involving

a Monolayer. We have begun to explore the use of X-ray

reflectivity to study changes in the structures of monolayers
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Figure 8. Effect of changing the electron density of che

alkylsiloxane monolayer on the intensity of

reflected X-rays, R/RF. A) Si/Si02 substrate.

B) Monolayer prepared from Cl 3 Si(CH2)2(CF2)7CF3.

C) Monolayer prepared from C1 3 Si(CH2)9CH3. A and

B are offset by factors of 104 and 102

respectively.
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when chemical reactions alter their composition. We had two

interests in these studies. First, we wished to determine if

X-ray reflectivity had the sensitivity to provide a new

analytical technique with which to follow reactions involving

monolayers. We were especially interested in its ability to

detect small changes in electron density (for example that

accompanying oxidation of a -CH=CH2 group to a -C02H group).

We were also concerned with its potential to damage the

sample during analysis. Second, we wished to see if the

structures of the alkylsiloxane monolayers were sufficiently

rigid and well ordered that we could incorporate into them

layers having large values of <dPel/dz> (for example, by

adding Br2 to a -CH=CH2 group to yield a -CHBrCH2Br moiety).

We have previously studied the addition of bromine to a

monolayer prepared from CI3Si(CH 2 )I5CH=CH2 (HTS).1 6 The

contact angle of water on this vinyl-terminated monolayer was

Ga2 0 = 1000. Reaction with elemental bromine generated what

we hypothesized to be the corresponding 1,2-dibromide (and

other related brominated species) 7 8 and resulted in a

decrease in Oa20 to - 800. XPS spectra confirmed the

incorporation of bromine into the monolayer. Ellipsometry

suggested that the monolayer had lengthened by 2 - 3 A. 7 9

Figure 9 presents X-ray reflectivity data for the

bromination of a monolayer prepared from HTS. Reflectivities

were measured from a single monolayer before and after

exposure to a solution of elemental bromine in CH2CI2. After

reaction, the primary minimum shifted to lower qz
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Figure 9. Change in the intensity of reflected X-rays that

results from chemical transformations of vinyl-

terminated alkylsiloxane monolayers prepared from

Cl3Si(CH2)15CH=CH2 (HTS). A) Addition of

elemental bromine (2%, v:v, in CH2Cl2) to form

-CHBrCH2Br or related brominated structures.

B) Oxidation by KMnO 4 (0.5 mM)/NaI04 (19.5

mM)/K2CO3 (1.8 mM, pH 7.5) to -C02H. For both A

and B the upper X-ray profile, offset by a factor

of 100, is that of the original monolayer; the

lower is that after the transformation of the tail

group of the monolayer.
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(Aqz = 0.014 A-1 ). Since the bromination effectively

lengthens the monolayer by one atomic center,8 0 this change

is expected and is consistent with the ellipsometric data.

The addition of one methylene unit to a saturated alkyl chain

containing 17 carbon atoms would shift qz by 0.0063 A-1. 8 1

The intensities of the minima also changed on bromination;

the primary minimum deepened while the second decreased in

amplitude.

If the bromine were localized in the position of the

double bond in a trans-extended conformation for the organic

chain, we would expect to infer from the X-ray reflectivity a

layer approximately 4 A thick with an electron density

several times that of the hydrocarbon. Fitting the intensity

data to a three-layer model did find a localized layer of

high electron density. The best fit to the data, however,

suggested a rather broad layer (6 A (FWHM) in thickness)

whose electron density corresponded to approximately 60% of

that expected for complete bromination of the vinyl groups in

the monolayer.

These results do not indicate a well-ordered, layered

structure for the brominated monolayer derived from HTS.
8 2

Their interpretation is, however, complicated by X-ray damage

to the brominated sample during the reflection measurements,

by uncertainty concerning the structures formed on

bromination, and by damage to the sample during the

reflectivity measurements before reaction with bromine.

After measuring the X-ray reflectivity of the vinyl-
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terminated monolayer prior to bromination, the central region

of the sample had a contact angle with water approximately

300 lower than the edges of the sample that were outside of

the X-ray beam. After bromination, the central area of this

sample had a contact angle of a = 670, 110 less than that

of the edge (82 0 = 780). Figure 10 presents XPS spectra for

the brominated monolayer. The survey spectra indicate that

there was only one-third as much bromine in the region

exposed to the X-rays as in the section not exposed to the

radiation. The C is spectra were also qualitatively

different in these regions: the exposed area showed several

different carbon environments with binding energies at least

3 eV higher than that of -CH2-. Since the contact angles on

the surface of the vinyl-terminated monolayer indicated some

degree of radiation damage prior to the bromination of the

monolayer, the reduced concentration of bromine that we

observed probably reflects a combination of two effects:

first, the radiation destroyed some fraction of the initial

vinyl groups, and, second, the synchrotron radiation removed

some of the bromine that had added to the remaining vinyl

groups.83,84

Figure 9 presents analogous reflectivity data for

materials obtained by oxidation with IMnO4 and NaI04 of

monolayers prepared from HTS. The expected product of this

reaction is a carboxylic acid.8 5 As for the bromination, we

measured the reflectivity from a single monolayer before and

after reaction. The X-ray data indicated a slight increase
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Figure 10. XPS spectra of alkyjsiloxane monolayers

terminated with -CHBrCH2Br (and related

brominated species, indicated by -"CHBrCH2Br")

and -C02H groups after exposure to X-ray

radiation from a synchrotron source: survey

spectra (left) and high resolution spectra of

the C ls region (right). A) Edge of monolayer

that was not exposed to any synchrotron X-ray

radiation. B) Central area that was irradiated

with the greatest flux of X-rays.
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in the thickness of the monolayer on oxidation, although this

change in thickness was not as large (Aqz = 0.008 A-1 ) as

that observed on bromination. The second minimum was also

reduced in amplitude after the oxidation. Since this

reaction replaces a carbon atom with two oxygen atoms, but

does not add to the end-to-end length of the chain, we do not

expect the change in the thickness of the monolayer to be as

large in this reaction as in the bromination reaction.

Attempts to model the observed data suggested that there was

a high density region at the air-monolayer interface. The

agreement between the model and the data was, however, poor.

Contact angle measurements on the vinyl-terminated

monolayer after the determination of its X-ray reflectivity

revealed typical radiation damage. After the reflectivity

measurements on the oxidized monolayer there was, however, no

observable difference in the contact angles of water

(OH20 = 400) between the region of the sample which had been

exposed to X-rays and the regions which had not. The XPS

spectra (Figure 10) also show no difference between the

irradiated and unirradiated regions. This apparent

uniformity in the surface and the resulting implication that

X-ray damage is not important in the these X-ray reflectivity

experiments is reasonable but possibly misleading. Both the

KMnO4/Na-04 oxidation and the synchrotron radiation would be

expected to generate oxidized species in the monolayer, and

it might not be possible for us to detect radiation damage in

this oxidized system.
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Discussion

This work makes it possible to compare measurements of

the thickness of alkylsiloxane monolayers on silicon using

two techniques: optical ellipsometry and low-angle X-ray

reflectivity. The former technique is more convenient than

the latter, but its use requires certain assumptions whose

correctness is difficult to check. The good agreement

between results from these independent techniques strongly

supports the accuracy of the thicknesses from ellipsometry.

The small, systematic difference observed between these sets

of results emphasizes the importance of detailed

consideration of the structure and properties of the

interfaces involved in reflecting light in the optical and X-

ray regions of the spectrum.

Ultimately the correctness of ellipsometry relies on the

proper choice for the refractive index of the monolayer.

While the agreement between the X-ray and ellipsometric

results is not sufficient to determine this index accurately,

we note that the electron density of the monolayer is

apparently independent of both the degree of completeness of

the monolayer and the length of the alkyl group in the

silane. Using the same refractive index for all samples,

whether partial or fully formed, therefore appears justified.

This conclusion differs from that reached for partial,

"skeletized" films prepared by the etching of Langmuir-

Blodgett multilayers, rather than the direct deposition of

partially formed monolayers. 8 6,8 7 It is plausible that this
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type of manipulation might yield an island structure rather

than the apparently uniform partial monolayers studied here.

The information available from X-ray reflectivity

concerning organic monolayer films is complementary to that

available from other techniques. X-ray reflectivity requires

no a priori assumptions about the structure (index of

refraction, roughness, thickness) of the sample. It has a

sensitivity to atomic scale structure that comes with the

short wavelength of X-ray light. In addition, the ability of

X-rays to penetrate solids makes it applicable to buried

interfaces, even if the overlying film is not transparent in

the optical spectrum.

X-ray reflectivity also has several limitations. First,

it requires a suitably flat substrate. At present highly

polished glass, float glass, and silicon are the only solids

that have been shown to have satisfactory flatness, 8 8 ,8 9

although a number of liquids4 9- 5 1 and liquid crystals 5 2 - 5 4

have been examined with this technique. Recent progress in

the epitaxial growth of metal surfaces 9 0 and the preparation

of ultrasmooth surfaces 91 suggests that the extension of this

technique to other substrates will soon be possible. Second,

the electron density of the monolayer must be different from

that of both the substrate and air; too close matching with

either results in an ill-defined interface (that is, a small

value of <dPel/dz> at the interface) and a decrease in

sensitivity and resolution. Third, organic samples may be

damaged by exposure to high-intensity X-rays. Irradiation of
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these monolayers in the presence of dioxygen appeared to

result in oxidation. Exposure of monolayers containing C-Br

bonds results in a loss of bromine. This type of loss is

also observed during XPS analysis under conditions that do

not damage methyl- or vinyl-terminated monolayers.1 6 How

important these damage processes are in causing artifacts in

the data, and how effectively they can be suppressed by

changing experimental conditions (for example, by using inert

atmospheres or vacuum, low temperatures, or short exposure

times) remains to be established. We believe that better

control over the conditions under which X-ray reflectivity

measurements are made will permit the use of this technique

for the detailed analysis of the structure of monolayer

systems.
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Experimental Section

Materials. Decyl-, dodecyl-, tetradecyl-, hexadecyl-,

and octadecyltrichlorosilane were obtained from Pet-irch

Systems and distilled prior to use. The compound

3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-

decyltrichlorosilane (Cl3Si(CH2)2(CF2)7CF3) was obtained from

Petrarch and used as received. The synthesis of 16-hepta-

decenyltrichlorosilane (HTS) has been described previously.1 6

Hexadecane and bicyclohexyl were obtained from Aldrich and

purified by percolating twice through neutral, grade 1,

activated (as purchased) alumina (Fisher). The purified

solvents passed the Bigelow test for polar impurities. 9 2

Silicon (100) was obtained in 3 in. diameter wafers from

Semiconductor Processing Corp (Boston, MA) (n-type, laser

grade) in three thicknesses, 0.080 in., 0.125 in., and

0.200 in., and from Monsanto (p-type, 0.015 in). Water was

passed through an ion exchanger (Cole-Parmer) and distilled

in a Corning Model AG-lb glass distillation apparatus.

Preparation of Monolayers. The silicon wafers were

cut into strips 1 in. wide. These strips were cleaned by

heating in a solution of conc. H2SO 4 and 30% H202 (70:30 v/v)

at 90 0C for 30 min. 9 3  ( LQ_L 2ianhab sution reacts

vihlentl be many oraanic m and s ba handled

w. are_ care.) The substrates were rinsed thoroughly with

distilled water and stored under water until use.

The cleaned silicon strips were removed from water using

teflon-coated forceps (Pelco) . All visible traces of water
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were eliminated by exposing the sample to a stream of argon

(minimum purity 99.995%) for - 30 sec. The silicon was then

placed in a - 0.5% w:w solution of the alkyltrichlorosilane

in hexadecane or bicyclohecyl. The containers for the

solution were custom made from rectangular glass tubing that

had one end sealed. Prior to use and during the formation of

the alkylsiloxane monolayers, the containers were kept either

under a dry nitrogen atmosphere or in a desiccator containing

P205 (Baker, "granusic"). After 1 h (desiccator) or 24 h

(nitrogen atmosphere), the substrate was removed from

solution and placed in 100 mL of CHC13 for 15 min to remove

any microscopic contaminants that might have adsorbed onto

the surface of the monolayer. The sample was then immersed

in 10C mL of ethanol for 30 sec and rinsed with ethanol

dispensed from a 2-m.L disposable pipette. The monolayer was

dried under a stream of argon and measurements of contact

angle and ellipsometry were made immediately.

Contact Angles. Advancing contact angles were

determined on sessile drops using a Ram4-Hart Model 100

contact angle goniometer equipped with a controlled

environment chamber. The relative humidity in the chamber

was maintained at > 80% by filling the wells of the sample

chazmber with water. The temperature was not controlled and

varied from 20 to 25 o. The volume of the drop used was

3 4L; its pH was - 5.6. All reported values are the average

of at least four measurements on the film surface and have a

maximum range of t 3'.
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Ellipsometry. Ellipsometric measurements were made

with a Rudolph Research Model 43603-200E thin film

ellipsometer. The light source was a He-Ne laser

(X = 6328 A). The angle of incidence was 70.00 (relative to

the normal of the plane of the sample) and the compensator

was set at -45.00. The measurements necessary for the

calculation of the film thickness consisted of the

determination of the polarizer and analyzer angles for the

silicon substrate and the corresponding set of angles for the

substrate coated with a monolayer film.

Each set of analyzer and polarizer readings, measured in

zones 1 and 3,94 were the average of at least four

measurements taken at different locations (separated by at

least 1 cm) on the sample. The angles that comprised this

average had a maximum scatter of ± 0.15'. These measurements

were determined in air for the bare substrate within 5 min of

its removal from water. The substrate was placed in the

solution of alkyltrichlorosilane immediately after these

measurements. Measurements for the substrate-monolayer

systems were taken no more than 5 min after the samples had

been washed with ethanol.

The refractive index of the substrate was calculated

from the analyzer and polarizer angles for the uncoated

silicon. This value was then used to determine the thickness

of the monolayer according to the algorithm of McCrackin. 2 9

The lengths were calculated assuming that the monolayer had a

refractive index of 1.45. The algorithm calculated two
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values for the length of the monolayer, both of which were

complex. Since the length of the monolayer must be real, we

chose the real part of the complex number with the smaller

imaginary component as the thickness of the monolayer. (The

other choice was inherently unreasonable since it was greater

than 1000 A.) Thicknesses determined in this way are

accurate to ± 2 A.

X-Ray Photoelectron Spectroscopy. The XPS spectra

were obtained using a Surface Science Laboratories Model

SSX-100 spectrometer (monochromatized Al K( X-ray source;

10-8-10-9 torr) referenced to Au 4f7/2 at 84.0 eV. Samples

were washed with ethanol, dried under a stream of argon, and

introduced into the spectrometer. For each sample a survey

spectrum (resolution 1.1 eV, spot size 1000 gm, 1 scan) and

high resolution spectra of the peaks for C is, 0 Is, Br 3d,

and Si 2p (resolution 0.16 eV, spot size 300 pm, 10-30 scans)

were collected. Atomic compositions were determined using

standard multiplex fitting routines with the following

sensitivity factors: C Is, 1.00; 0 is, 2.49; Si 2p, 0.90;

Br 3d, 3.188. 95

X-Ray Reflection Measurements. X-ray sources were a

Rigaku rotating anode (RA) X-ray generator (Cu Kal radiation,

X = 1.54 A, 90 mA, 45 keY) and the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory (beam line

X-22B, X = 1.71 A) . Monochromatic radiation was obtained by

refle.ction from a monochromator (RA, triple bounce Germanium

(111); NSLS, single bounce Germanium (iIl)). The beam size



- 54 -

was 0.1 x 5 mm for incident angles less than 10 and 0.5 x 5

mm for incident angles greater than 10. X-rays were

monitored using two scintillation detectors: one for the

incoming beam, the other for the radiation reflected from the

sample. The intensities of the reflected X-rays were

normalized to the intensity of the incoming beam.

Since the background radiation was a function of the

angle of the incoming beam, point by point background

subtraction was performed. The background was determined by

purposely misaligning the detector by ± 0.30 at each incident

angle 0.

Samples were mounted in a brass cell with KaptonT-i

(DuPont) windows. The chamber excluded X-rays at angles

greater than 7'. The atmosphere in the chamber was either

air or helium.

The range of intensities that could be detected was 106

with the rotating anode and 109 at NSLS. A typical

reflection scan required 15 h on the rotating anode and 4 h

at NSLS. The data that was obtained at NSLS covered twice

the range in qz as that from the rotating anode.

Bromination. The X-ray reflectivity for a monolayer

prepared from HTS was measured as above. This monolayer was

then placed in a 2% (by volume) solution of elemental bromine

in CH2CI2 for 7 h. The wafer was then rinsed in CH2Cl2 and

in ethanol. The reflectivity was then measured again.

Oxidation. As for the bromination, the reflectivities

before and after oxidation were measured as described above.
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Stock solutions of KMnO 4 (5 mM), NaI04 (195 mM), and K2CO 3

(18 mM) in water were prepared. Immediately prior to the

oxidation 1 mL of each of these solutions was combined with

7 mL of distilled water to create the oxidizing solution

(KMnO4, 0.5 mM; NaI04, 19.5 mM; K2C03, 1.8 mM, pH 7.5). The

monolayer prepared from HTS was placed in this solution for

2 h at 75 *C. The sample was removed from the oxidant and

rinsed in 20 mL of each of NaHSO3 (0.3 M), water, 0.1 N HCl,

water, and ethanol.

Pentadecyltrichlorosilane. Dihydrogenhexachloro-

platinate(II) (Alfa, 5.3 mL of a 0.01 M solution in THF,

0.053 mmol), trichlorosilane (Petrarch, 8.6 mL, 85 mmol) and

1-pentadecene (Aldrich, 15.01 g, 71 mmol) were placed under

argon in a dry heavy-walled glass tube (diameter-2.5 cm,

length-21 cm) equipped with a sidearm and a 0-10 mm PTFE

stopcock. The solution was degassed (freeze-pump-thaw,

3 cycles) and the tube was sealed under vacuum at -195 *C.

The tube was then warmed to room temperature, after which it

was heated in an oil bath (99 0C, 43 h) . The tube was then

cooled to room temperature. The reaction solution was

transferred to a 100-mL round-bottomed flask equipped with a

vacuum adapter. A liquid nitrogen-cooled trap was attached

and the excess trichlorosilane and THF were removed by a

trap-to-trap distillation. The remaining liquid was

distilled in a dry Kugelrohr distillation apparatus. The

product (15.3 g, 44 mmol, 62%) was the fraction collected

from 95 *C(0.013 torr) to 105 'C(0.010 torr).
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1H NMR (CDC13): 5 1.7-1.2 (in, 28), 0.9 (t, 3). 13 C NMR

(CDC13): 8 32.24, 32.01, 30.00, 29.94, 29.89, 29.68, 29.25,

24.50, 22.98, 22.51, 14.29. Anal. Calcd. for C15H31Cl3Si:

C, 52.08; H, 9.05; Cl, 30.75. Found: C, 51.89; H, 9.12;

Cl, 30.95.
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Captions

Figure 1. Two-layer model used for ellipsometry. The

silicon substrate has refractive index n2, the

monolayer has refractive index nl, and the

ambient air has refractive index no. The

interfaces between each layer are assumed to be

perfectly sharp. For the alkylsiloxane

monolayers on silicon n2 is - 3.8, ni is - 1.45,

and no is assumed to be 1. The incident angle

of the laser light, 00, is 700. The angles of

refraction, 01 - 400 and *2 = 150, are given by

Snell's law (nlsinol = n2sin2).

Figure 2. Intensity, R, of X-rays reflected from

alkylsiloxane monolayers on silicon-silicon

dioxide substrates as a function of qz, the

momentum change of the photon upon reflection.

The monolayers were prepared from

alkyltrichlorosilanes, Cl3Si(CH2)nCH3. The top

spectrum is for bare Si/SiO 2 . Each spectrum is

offset by 103 from the one above it. The solid

line is the calculated Fresnel reflectivity, RF,

for a perfectly smooth silicon substrate.
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Figure 3. Models for Pel, the electron density, and

dPel/dz, the change in electron density along

the normal perpendicular to the plane of the

monolayer, used to analyze the measured X-ray

reflectivity of alkylsiloxane monolayers on

Si/SiO2 substrates. The air-monolayer and

monolayer-substrate interfaces are represented

in dPel/dz by Gaussian functions, Alexp(z2/201 2 )

and A2exp((z-d)2/2a22 ). The parameter d, the

separation between the centers of these

functions, represents the distance between the

air-monolayer and monolayer-substrate

interfaces. This distance is the thickness of

the monolayer. Al, A2, 01, and C2 are the

heights and widths of the Gaussian functions.

The parameters Spl and SP2 are the changes in

refractive index across each interface and are

proportional to Alal and A202. The electron

density decreases from substrate to monolayer to

air. The index of refraction for X-rays is a

linear function of the electron density.
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Figure 4. XPS spectra of a monolayer prepared from

C13Si(CH2)11CH3 showing radiation damage caused

by exposure to X-rays from a synchrotron source:

survey spectra (left) and high resolution

spectra of the C is region (right). A) Edge of

sample unexposed to X-rays. The contact angle

in this region was Oa20 = 1120. The contact

angle and XPS spectra of this area were

indistinguishable from those of monolayers that

had not been exposed to any X-ray radiation. No

carbon atoms in oxidized environments are

observed. B) Central area of sample exposed to

the greatest flux of X-rays. The contact angle

in this region was 6a2O = 820. The high-

resolution C ls spectrum exhibits a tail to

higher binding energy, indicating the presence

of oxidized carbon species.

Figure 5. Comparison of the thicknesses of alkylsiloxane

monolayers as measured by ellipsometry and X-ray

reflectivity. The solid circles (0) are the

thicknesses of complete monolayers; the open

circles (0) are the thicknesses of partial

monolayers. The solid line is that expected if

the two techniques yield the same thickness.

The dotted line is offset by 1.4 A and is that

expected if only ellipsometry includes the
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silicon atom of the alkylsilane in the measured

thickness (see text).

Figure 6. Models for the structure of incomplete

monolayers. A complete monolayer has a

thickness, d, and an index of refraction, nI.

In the uniform model the partial monolayer has a

length less than d and an index of refraction

approximately equal to nI. In the island model

the incomplete monolayer has a thickness, d, but

the index of refraction is less than nI.

Figure 7. Comparison of the X-ray reflectivity, R/RF, of

partial and complete monolayers prepared from

Cl3Si(CH2)nCH3. A) n = 17. B) n = 11. The

reflectivities of the complete monolayers are

offset by a factor of 100.

Figure 8. Effect of changing the electron density of the

alkylsiloxane monolayer on the intensity of

reflected X-rays, R/RF. A) Si/SiO2 substrate.

B) Monolayer prepared from Cl3Si(CH2)2(CF2)7CF3.

C) Monolayer prepared from C13Si(CH2)9CH3. A

and B are offset by factors of 10
4 and 102

respectively.
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Figure 9. Change in the intensity of reflected X-rays that

results from chemical transformations of vinyl-

terminated alkylsiloxane monolayers prepared

from Cl3Si(CH2)15CH=CH2 (HTS). A) Addition of

elemental bromine (2%, v:v, in CH2C12 ) to form

-CHBrCH2Br or related brominated structures.

B) Oxidation by KMn04 (0.5 mM)/NaIO4 (19.5

mM)/K2C03 (1.8 mM, pH 7.5) to -CO2H. For both A

and B the upper X-ray profile, offset by a

factor of 100, is that of the original

monolayer; the lower is that after the

transformation of the tail group of the

monolayer.

Figure 10. XPS spectra of alkylsiloxane monolayers

terminated with -CHBrCH2Br (and related

brominated species, indicated by -"CHBrCH2Br")

and -C02H groups after exposure to X-ray

radiation from a synchrotron source: survey

spectra (left) and high resolution spectra of

the C Is region (right). A) Edge of monolayer

that was not exposed to any synchrotron X-ray

radiation. B) Central area that was irradiated

with the greatest flux of X-rays.
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Appendix

The general description of the intensity of X-rays

reflected from a sample is given in equations A and B. 1 We

will consider the form of the X-ray reflectivity, R, for two

00

R =RF JO- f~~j <dPel/dz> exp(iqzz) dz J2 (A)
-00

qz = 4nk-lsinO (B)

ideal forms of <dPel/dz>.

The first case is a single sharp interface located at

z = 0. For such an interface, <dPel/dz> takes the form of a

delta function (eq C). The p, in equation C is present as a

<dPel/dz> - p. 8(z) (C)

normalization factor. From the properties of the delta

function, 2 equation A reduces to the expected Fresnel

reflectivity, RF (eq D

R RF (exp(iqz0)) 2 = RF (1)2 = RF (D)

We will now deduce the form of R for two sharp

interfaces of equal height separated by a distance d. This

situation is represented by two delta functions (eq E). Here

<dPel/dz> = 0.5pw[8(z) + 5(z-d) (E)
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the normalization factor is 0.5p,. Inserting this formula

into equation A yields the form of R given by equation F.

R = (0.5)2 RF f[8(z) + 8(z-d)]exp(iqzz)dz 12

= 0.25 RFI 8(z)exp(iqzz)dz + I8(z-d)exp(iqzz)dz 12

= 0.25 RF I 1 + exp(iqzd) 12 (F)

We will consider the case of complete destructive

interference (R = 0). Equation (F) then takes the form given

by equation G. When we equate the real and complex parts of

0 = 1 + exp(iqzd) = 1 + cos(qzd) + isin(qzd) (G)

both sides of equation G, we find that qzd must be an odd

multiple of 7c (eq H). We now substitute for qz from equation

B (eq I). Rearrangement of equation I yields equation J

qzd = (2n + 1)7T n = an integer (H)

47Csin8 d - ! = (2n + 1)n (I)

2dsine = (2n + 1)%/2 (J)

which is the usual condition for total destructive

interference. 3 With a slightly more complex analysis we can
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show that if the two sharp interfaces are of unequal height,

equation J gives the angle at which the intensity of the

reflected X-rays is at a minimum. If the two interfaces are

not of the same height, however, the interference can never

be totally destructive; that is, R # 0.
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